
Jarrar © 2018 1

Mustafa Jarrar: Lecture Notes on Artificial Intelligence
Birzeit University, 2018

Mustafa Jarrar
Birzeit University

Chapter 3

Uninformed Search

http://www.birzeit.edu/

Jarrar © 2018 2

More Online Courses at: http://www.jarrar.info
Course Page: http://www.jarrar.info/courses/AI/

Watch this lecture
and download the slides

Acknowledgement:
This lecture is based on (but not limited to) chapter x in “S. Russell and P. Norvig: Artificial Intelligence:
A Modern Approach”.

http://www.jarrar.info/
http://www.jarrar.info/courses/AI/

Jarrar © 2018 3

Lecture Outline

q Achieve intelligence by (searching) a solution!

q Problem Formulation

q Search Strategies
q breadth-first
q uniform-cost search
q depth-first
q depth-limited search
q iterative deepening
q bi-directional search

Jarrar © 2018 4

Example: Romania

You are in Arad and want to go to Bucharest

è How to design an intelligent agent to find the way between 2 cities?

Jarrar © 2018 5

Example: The 8-puzzle

è How to design an intelligent agent to solve the 8-puzzel?

Jarrar © 2018 6

Motivation

• Solve a problem by searching for a solution. Search
strategies are important methods for many approaches to
problem-solving [2].

• Problem formulation. The use of search requires an
abstract formulation of the problem and the available steps
to construct solutions.

• Optimizing Search. Search algorithms are the basis for
many optimization and planning methods.

Jarrar © 2018 7

Problem Formulation

To solve a problem by search, we need to first formulate the
problem.

HOW?

Our textbook suggest the following schema to help us
formulate problems

1. State
2. Initial state
3. Actions or Successor Function
4. Goal Test
5. Path Cost
6. àSolution

Jarrar © 2018 8

Problem Formulation (The Romania Example)

State: We regard a problem as state space
here a state is a City

Initial State: the state to start from
In(Arad)

Successor Function: description of the possible actions, give state x, S(X)
returns a set of <action, successor> ordered pairs.
S(x)= { <Go(Sibiu), In(Sibiu)>, <Go(Timisoara), In(Timisoara)>,

<Go(Zerind),In(Zerind)> }

Goal Test: determine a given state is a goal state.
In(Sibiu) àNo. In(Zerind) àNo.…. In(Bucharest)àYes!

Path Cost: a function that assigns a numeric cost to each path.
– e.g., sum of distances, number of actions executed, etc.
– c(x,a,y) is the step cost, assumed to be ≥ 0

Solution: a sequence of actions leading from the initial state to a goal state
{Arad àSibiu à Rimnicu Vilcea à Pitesti à Bucharest}

Jarrar © 2018 9

Problem Formulation (The 8- Puzzle Example)

State: The location of the eight tiles, and the blank

Initial State: {(7,0), (2,1), (4,2), (5,3), (_,4), (6,5), (8,6), (3,7), (1,8)}

Successor Function: one of the four actions (blank moves Left, Right, Up,
Down).

Goal Test: determine a given state is a goal state.

Path Cost: each step costs 1

Solution: {(_,0),(1,1),(2,2) ,(3,3) ,(4,4) ,(5,5) ,(6,6) ,(7,7) ,(8,8)}

Jarrar © 2018 10

Problem Formulation (Real-life Applications)

Route Finding Problem

• States
– locations

• Initial state
– starting point

• Successor function (operators)
– move from one location to another

• Goal test
– arrive at a certain location

• Path cost
– may be quite complex

• money, time, travel comfort,
scenery,

Car
Navigation

Routing in Computer
networks

Military operation
planning

Airline travel
planning

Jarrar © 2018 11

Problem Formulation (Real-life Applications)

Routing Problem

è What is the state space for each of them?
A set of places with links between them, which have been visited

Jarrar © 2018 12

Problem Formulation (Real-life Applications)

Travel Salesperson Problem
• States

– locations / cities
– illegal states

• each city may be visited only once
• visited cities must be kept as state information

• Initial state
– starting point
– no cities visited

• Successor function (operators)
– move from one location to another one

• Goal test
– all locations visited
– agent at the initial location

• Path cost
– distance between locations

Based on [2]

Jarrar © 2018 13

Problem Formulation (Real-life Applications)

VLSI layout Problem
• States

– positions of components, wires on a chip
• Initial state

– incremental: no components placed
– complete-state: all components placed (e.g.

randomly, manually)
• Successor function (operators)

– incremental: place components, route wire
– complete-state: move component, move wire

• Goal test
– all components placed
– components connected as specified

• Path cost
– maybe complex

• distance, capacity, number of connections per
component

Jarrar © 2018 14

Problem Formulation (Real-life Applications)

Robot Navigation
• States

– locations
– position of actuators

• Initial state
– start position (dependent on the task)

• Successor function (operators)
– movement, actions of actuators

• Goal test
– task-dependent

• Path cost
– maybe very complex

• distance, energy consumption

Jarrar © 2018 15

Problem Formulation (Real-life Applications)

Automatic Assembly Sequencing

• States
– location of components

• Initial state
– no components assembled

• Successor function (operators)
– place component

• Goal test
– system fully assembled

• Path cost
– number of moves

Jarrar © 2018 16

Searching for Solutions

Traversal of the search space
– From the initial state to a goal state.
– Legal sequence of actions as defined by successor function.

General procedure
– Check for goal state
– Expand the current state

• Determine the set of reachable states
• Return “failure” if the set is empty

– Select one from the set of reachable states
– Move to the selected state

A search tree is generated
– Nodes are added as more states are visited

Jarrar © 2018 17

Search Terminology

Search Tree
– Generated as the search space is traversed

• The search space itself is not necessarily a tree, frequently it is a
graph

• The tree specifies possible paths through the search space
– Expansion of nodes

• As states are explored, the corresponding nodes are expanded by
applying the successor function

– this generates a new set of (child) nodes
• The fringe (frontier/queue) is the set of nodes not yet visited

– newly generated nodes are added to the fringe

– Search strategy
• Determines the selection of the next node to be expanded
• Can be achieved by ordering the nodes in the fringe

– e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure (cost)

Jarrar © 2018 18

Example: Graph Search

• The graph describes the search (state) space
– Each node in the graph represents one state in the search space

• e.g. a city to be visited in a routing or touring problem

• This graph has additional information
– Names and properties for the states (e.g. S3)

– Links between nodes, specified by the successor function
• properties for links (distance, cost, name, ...)

S3

A4

C2

D3

E1B2

G0

1 1 1 3

1
3 3

4

5

1

2

Jarrar © 2018 19

Traversing a Graph as Tree

S3

5

A4

D3

1

1

33

4

2

C2

D3G0

G0

G0 E1

G0

1

1

3

3

4

2

C2

D3

G0

G0 E1

G0

1

3

B2

1

3

C2

D3

G0

G0 E1

G0

1

3

4 E1

G0

2 4

3 2

4

S3

A4

C2

D3

E1B2

G0

1 1 1 3

1
3 3

4

5

1

2
§ A tree is generated by

traversing the graph.

§ The same node in the
graph may appear
repeatedly in the tree.

§ the arrangement of the
tree depends on the
traversal strategy
(search method)

§ The initial state
becomes the root node
of the tree

§ In the fully expanded
tree, the goal states
are the leaf nodes.

§ Cycles in graphs may
result in infinite
branches.

2

Jarrar © 2018
20

Searching Strategies

Most of the effort is often spent on the selection of an appropriate search

strategy for a given problem:

– Uninformed Search (blind search)

• number of steps, path cost unknown

• agent knows when it reaches a goal

– Informed Search (heuristic search)

• agent has background information about the problem

– map, costs of actions

Uninformed Search
– breadth-first

– uniform-cost search

– depth-first

– depth-limited search

– iterative deepening

– bi-directional search

Informed Search
– best-first search

– search with heuristics

– memory-bounded search

– iterative improvement search

Jarrar © 2018 21

Evaluation of Search Strategies

A search strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:
• Completeness: if there is a solution, will it be found
• Time complexity: How long does it takes to find the solution
• Space complexity: memory required for the search
• Optimality: will the best solution be found

Time and space complexity are measured in terms of
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)

Jarrar © 2018 22

1: Breadth-First Search

Jarrar © 2018 23

Breadth-First Search

All the nodes reachable from the current node are explored
first (shallow nodes are expanded before deep nodes).

Algorithm (Informal)
1. Enqueue the root/initial node.
2. Dequeue a node and examine it.

1. If the element sought is found in this node, quit the search and return a
result.

2. Otherwise enqueue any successors (the direct child nodes) that have not
yet been discovered.

3. If the queue is empty, every node on the graph has been examined –
quit the search and return "not found".

4. Repeat from Step 2.

Based on [3]

Jarrar © 2018 24

Breadth-First Snapshot 1

Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

Fringe: [] + [2,3]

Jarrar © 2018 25

Breadth-First Snapshot 2

1

2 3

4 5

Fringe: [3] + [4,5]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 26

Breadth-First Snapshot 3

1

2 3

4 5 6 7

Fringe: [4,5] + [6,7]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 27

Breadth-First Snapshot 4

1

2 3

4 5 6 7

8 9

Fringe: [5,6,7] + [8,9]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 28

Breadth-First Snapshot 5

1

2 3

4 5 6 7

8 9 10 11

Fringe: [6,7,8,9] + [10,11]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 29

Breadth-First Snapshot 6

1

2 3

4 5 6 7

8 9 10 11 12 13

Fringe: [7,8,9,10,11] + [12,13]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 30

Breadth-First Snapshot 7

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fringe: [8,9.10,11,12,13] + [14,15]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 31

Breadth-First Snapshot 8

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

Fringe: [9,10,11,12,13,14,15] + [16,17]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 32

Breadth-First Snapshot 9

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

Fringe: [10,11,12,13,14,15,16,17] + [18,19]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 33

Breadth-First Snapshot 10

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21

Fringe: [11,12,13,14,15,16,17,18,19] + [20,21]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 34

Breadth-First Snapshot 11

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

Fringe: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [22,23]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 35

Breadth-First Snapshot 12

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

Fringe: [13,14,15,16,17,18,19,20,21] + [22,23]

Note:
The goal node is
“visible” here, but
we can not
perform the goal
test yet.

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 36

Breadth-First Snapshot 13

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

Fringe: [14,15,16,17,18,19,20,21,22,23,24,25] + [26,27]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 37

Breadth-First Snapshot 14

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27] + [28,29]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 38

Breadth-First Snapshot 15

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] + [30,31]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 39

Breadth-First Snapshot 16

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 40

Breadth-First Snapshot 17

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 41

Breadth-First Snapshot 18

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [19,20,21,22,23,24,25,26,27,28,29,30,31]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 42

Breadth-First Snapshot 19

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [20,21,22,23,24,25,26,27,28,29,30,31]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 43

Breadth-First Snapshot 20

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [21,22,23,24,25,26,27,28,29,30,31]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 44

Breadth-First Snapshot 21

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [22,23,24,25,26,27,28,29,30,31]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 45

Breadth-First Snapshot 22

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [23,24,25,26,27,28,29,30,31]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 46

Breadth-First Snapshot 23

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [24,25,26,27,28,29,30,31]

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 47

Breadth-First Snapshot 24

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [25,26,27,28,29,30,31]

Note:
The goal test
is positive for
this node, and
a solution is
found in 24
steps.

Initial
Visited
Fringe
Current
Visible
Goal

Jarrar © 2018 48

Properties of Breadth-First Search (BFS)

Completeness: Yes (if b is finite), a solution will be found if exists.

Time Complexity: 1+b+b2+b3+… +bd + (bd+1- b) = bd+1 (nodes until the solution)

Space Complexity: bd+1 (keeps every generated node in memory)

Optimality: Yes (if cost = 1 per step)

Suppose the branching factor b=10, and the goal is at depth d=12:
– Then we need O1012 time to finish. If O is 0.001 second, then we need 1

billion seconds (31 year). And if each O costs 10 bytes to store, then we
also need 1 terabytes.

èNot suitable for searching large graphs

b Branching Factor

d The depth of the goal

Jarrar © 2018 49

2- Uniform-Cost -First

Jarrar © 2018 50

Uniform-Cost -First

Visits the next node which has the least total cost from the
root, until a goal state is reached.

– Similar to BREADTH-FIRST, but with an evaluation of the cost for
each reachable node.

– g(n) = path cost(n) = sum of individual edge costs to reach the
current node.

Jarrar © 2018 51

Uniform-Cost Search (UCS)

Jarrar © 2018 52

Uniform-Cost Search (UCS)

Jarrar © 2018 53

Uniform-Cost Search (UCS)

Jarrar © 2018 54

Uniform-Cost Search (UCS)

Jarrar © 2018 55

Uniform-Cost Search (UCS)

Jarrar © 2018 56

Uniform-Cost Search (UCS)

Jarrar © 2018 57

Uniform-Cost Search (UCS)

Jarrar © 2018 58

Uniform-Cost Search (UCS)

Jarrar © 2018 59

Properties of Uniform-cost Search (UCS)

Completeness Yes (if b is finite, and step cost is positive)

Time Complexity much larger than bd, and just bd if all steps have the
same cost.

Space Complexity: as above

Optimality: Yes

Requires that the goal test being applied when a node is removed from the

nodes list rather than when the node is first generated while its parent node

is expanded.

b Branching Factor
d Depth of the goal/tree

Jarrar © 2018 60

Breadth-First vs. Uniform-Cost

Breadth-first search (BFS) is a special case of uniform-cost
search when all edge costs are positive and identical.
Breadth-first always expands the shallowest node

– Only optimal if all step-costs are equal

Uniform-cost considers the overall path cost
– Optimal for any (reasonable) cost function

• non-zero, positive

– Gets stuck down in trees with many fruitless, short branches
• low path cost, but no goal node

Both are complete for non-extreme problems
– Finite number of branches

– Strictly positive search function

Jarrar © 2018 61

3- Depth-First Search

Jarrar © 2018 62

Depth-First Search

A depth-first search (DFS)
explores a path all the way to a
leaf before backtracking and
exploring another path.

For example, after searching A,
then B, then D, the search
backtracks and tries another path
from B.

Node are explored in the order A
B D E H L M N I O P C F G J
K Q

L M N O P

G

Q

H JI K

FED

B C

A

Based on [4]

Jarrar © 2018 63

Depth-First Search

Put the root node on a stack;
while (stack is not empty) {

remove a node from the stack;
if (node is a goal node) return success;
put all children of node onto the stack;

}
return failure;

At each step, the stack contains some nodes from each of a
number of levels

– The size of stack that is required depends on the branching factor b
– While searching level n, the stack contains approximately (b-1)*n

nodes

When this method succeeds, it doesn’t give the path

Based on [4]

Jarrar © 2018 64

Search(node):
if node is a goal, return success;
for each child c of node {

if search(c) is successful, return success;
}
return failure;

The (implicit) stack contains only the nodes on a path from the
root to a goal

– The stack only needs to be large enough to hold the deepest search
path

– When a solution is found, the path is on the (implicit) stack, and can
be extracted as the recursion “unwinds”

Recursive Depth-First Search

print node and

print c and

Jarrar © 2018 65

Properties of Depth-First Search

Complete: No: fails in infinite-depth spaces, spaces with loops
– Modify to avoid repeated states along path
– à complete in finite spaces

Time: O(bm): terrible if m is much larger than d
– but if solutions are dense, may be much faster than breadth-first

Space: O(bm), i.e., linear space!

Optimal: No
b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be ∞)

Jarrar © 2018 66

Depth-First vs. Breadth-First

Depth-first goes off into one branch until it reaches a leaf node
– Not good if the goal is on another branch
– Neither complete nor optimal
– Uses much less space than breadth-first

• Much fewer visited nodes to keep track, smaller fringe

Breadth-first is more careful by checking all alternatives
– Complete and optimal (Under most circumstances)
– Very memory-intensive

For a large tree, breadth-first search memory requirements maybe
excessive
For a large tree, a depth-first search may take an excessively long time to
find even a very nearby goal node.
è How can we combine the advantages (and avoid the disadvantages) of
these two search techniques?

Jarrar © 2018 67

4- Depth-Limited Search

Similar to depth-first, but with a limit
– i.e., nodes at depth l have no successors
– Overcomes problems with infinite paths
– Sometimes a depth limit can be inferred or estimated

from the problem description
• In other cases, a good depth limit is only known when the

problem is solved
– must keep track of the depth

b branching factor
l depth limit

• Complete? no (if goal beyond l (l<d), or infinite branch length)
• Time? bl

• Space? B*l
• Optimal? No (if l < d)

Jarrar © 2018 68

5- Iterative Deepening Depth-First Search

Jarrar © 2018
69

Iterative Deepening Depth-First Search

Applies LIMITED-DEPTH with increasing depth limits

• Combines advantages of BREADTH-FIRST and DEPTH-

FIRST

• It searches to depth 0 (root only), then if that fails it

searches to depth 1, then depth 2, etc.

Jarrar © 2018 70

Iterative deepening search l =0

Jarrar © 2018 71

Iterative deepening search l =1

Jarrar © 2018 72

Iterative deepening search l =2

Jarrar © 2018 73

Iterative deepening search l =3

Jarrar © 2018 74

Iterative Deepening Depth-First Search

If a goal node is found, it is a nearest node and the path to it
is on the stack.

• Required stack size is limit of search depth (plus 1).

• Many states are expanded multiple times
• doesn’t really matter because the number of those nodes is small

• In practice, one of the best uninformed search methods
• for large search spaces, unknown depth

Jarrar © 2018 75

Properties of Iterative Deepening Search

Complete: Yes (if the b is finite)

Time: (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

Space: O(bd)

Optimal: Yes, if step cost = 1

b branching factor
d Tree/goal depth

Jarrar © 2018 76

Iterative Deepening Search

The nodes in the bottom level (level d) are generated once,
those on the next bottom level are generated twice, and so on:

NIDS = (d)b + (d-1)b2 + … + (1) bd

Time complexity = bd

Compared with BFS:
NBFS = b + b2 … + bd + (bd+1 –b)

• Suppose b = 10, d = 5,
NIDS = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

NBFS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

è IDS behaves better in case the search space is large and the depth of
goal is unknown.

Jarrar © 2018
77

Iterative Deepening Search

When searching a binary tree to depth 7:

– DFS requires searching 255 nodes

– Iterative deepening requires searching 502 nodes

– Iterative deepening takes only about twice as long

When searching a tree with branching factor of 4 (each node

may have four children):

– DFS requires searching 21845 nodes

– Iterative deepening requires searching 29124 nodes

– Iterative deepening takes about 4/3 = 1.33 times as long

The higher the branching factor, the lower the relative cost of

iterative deepening depth first search

Based on [4]

Jarrar © 2018 78

6- Bi-directional Search

Search simultaneously from two directions
– Forward from the initial and backward from the goal state, until they

meet in the middle (i.e., if a node exists in the fringe of the other).
– The idea is to have (bd/2 + bd/2) instead of bd, which much less

May lead to substantial savings (if it is applicable), but is has
several limitations

– Predecessors must be generated, which is not always possible
– Search must be coordinated between the two searches
– One search must keep all nodes in memory

b branching factor

d tree depth

Time Complexity bd/2

Space Complexity bd/2

Completeness yes (b finite, breadth-first for both directions)
Optimality yes (all step costs identical, breadth-first for

both directions)

Jarrar © 2018 79

Summary

• Problem formulation usually requires abstracting away
real-world details to define a state space that can
feasibly be explored.

• Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed
algorithms

Jarrar © 2018
80

Summary

Breadth-first search (BFS) and depth-first search (DFS) are

the foundation for all other search techniques.

We might have a weighted tree, in which the edges

connecting a node to its children have differing “weights”

– We might therefore look for a “least cost” goal

The searches we have been doing are blind searches, in

which we have no prior information to help guide the search

Jarrar © 2018 81

Summary (When to use what)

Breadth-First Search:
– Some solutions are known to be shallow

Uniform-Cost Search:
– Actions have varying costs

– Least cost solution is the required
This is the only uninformed search that worries about costs.

Depth-First Search:
– Many solutions exist

– Know (or have a good estimate of) the depth of solution

Iterative-Deepening Search:
– Space is limited and the shortest solution path is required

Jarrar © 2018 82

Improving Search Methods

Make algorithms more efficient
– avoiding repeated states

Use additional knowledge about the problem
– properties (“shape”) of the search space

• more interesting areas are investigated first
– pruning of irrelevant areas

• areas that are guaranteed not to contain a solution can be
discarded

Jarrar © 2018 83

Project (Car Navigator)

Develop a simulation program that takes as input (map, current town,
goal town), and returns the path to the goal, as well as whether the
algorithm used is complete, its time and space complexities, and
whether it is optimal.

The simulator should
implement all searching
strategies described
earlier.

Please develop a map (an
area in Palestine) to test
your program. The size of
the map should be: the
branching factor (b) is >3,
and the depth >10

Jarrar © 2018 84

References

[1] S. Russell and P. Norvig: Artificial Intelligence: A Modern
Approach Prentice Hall, 2003, Second Edition

[2] Franz Kurfess: Notes on Artificial Intelligence
http://users.csc.calpoly.edu/~fkurfess/Courses/480/F03/Slides/3-Search.pdf

[3] "Breadth-first Search." Wikipedia. Wikimedia Foundation.
Web. 3 Feb. 2015. <http://en.wikipedia.org/wiki/Breadth-f
irst_search>.

[4] David Lee Matuszek: Lecture Notes on Tree Searches
http://www.cs.nyu.edu/courses/fall06/V22.0102-001/lectures/treeSearching.ppt

http://users.csc.calpoly.edu/~fkurfess/Courses/480/F03/Slides/3-Search.pdf
http://www.cs.nyu.edu/courses/fall06/V22.0102-001/lectures/treeSearching.ppt

